Name of facult	y :	: Anita Rani			
Subject	:	Electronics-II	Sem	:	3 rd Electrical

Week	Lecture	Name of topic	Date	Experiment
1st	1 st	Difference between voltage and power		To study the effect of
		amplifiers, collector efficiency, distortion		coupling capacitor on
		and dissipation capability		lower cut off frequency
	2 nd	Class A, Class B, Class AB, and Class C		and upper cut off
		amplifiers		frequency by plotting
	3rd	Class A single-ended power amplifier, its		frequency response curve
		working and collector efficiency		of a two stage RC
nd				coupled amplifier
2 nd	4th	Impedance matching in a power amplifier		.To measure (a) optimum
		using transformer		load (b) output power (c)
	5th	6 Heat sinks in power amplifiers, Push-pull		signal handling capacity
		amplifier		of a push-pull amplifier
	6th	complementary symmetry push-pull amplifier.		
3rd	7th	Series resonant circuits and bandwidth of		.To measure (a) voltage
		resonant circuits		gain (b) input and output
	8th	Series and parallel resonant circuits and		impedance for an emitter
		bandwidth of resonant circuits		follower circuit
	9th	Single tuned voltage amplifiers and their		
_		frequency response characteristics		
4 th	10th	double tuned voltage amplifiers and their		Revision and iva
		frequency response characteristics and		
		applications.		
	11th	Feedback and its importance, positive and		
	th	negative feedback and their need		
	12"	expression for gain of an amplifier		
	. e th	employing feedback		
5th	13	Effect of feedback (negative) on gain,		To measure frequency
		stability distortion and bandwidth of an		generation in (a) Hartley
		impedance of amplifier		(b) R-C Phase Shift
	1.4 th	Types of foodback circuit		Oscillator
	14 15th	Revision		
6th	16 th	Revision		To observe the
oth	10 17th	Sessional Test		differentiated and
	18 th	Effect of removing the emitter by-pass		integrated square wave
	10	capacitor on a CE transistor amplifier		on a CRO for different
				values of R-C time
				constant
7 th	19th	Emitter follower and its application		Clipping of both portion
				of sine-wave using: a)
	20 th	Sinusoidal Oscillators – positive feedback in		diode and dc source b)
		amplifiers		/*zener diodes Clamping

	21 st	.Difference between an oscillator and an	a sine-wave to: a)
		alternator, Essentials of an oscillator	Negative dc voltage b)
			Positive dc voltage
8 th	22 nd	Circuit details and working of LC oscillators	Revision and Viva
•		viz. Tuned Collector, Hartley and Colpitt's	
		oscillators	
	23 rd	R-C oscillator circuits, phase shift	
	24 th	Wein bridge oscillator circuits	
9 th	25 th	Introduction to piezoelectric crystal and	To generate square-wave
		crystal oscillator circuit	using an astable
	26 th	Concept of Wave-shaping , Wave-shaping	multivibrator and to
		circuits	observe the wave form
	27 th	R-C differentiating and integrating circuits	on a CRO and verify the
			result using p-spice
			software
10th	28 th	Diode clipping circuits	To observe triggering and
	29 th	Diode clamping circuits	working of a bistable
	30 th	Revision	multivibrator circuit and
11th	31 st	Sessional test	observe its output wave
	32 nd	Tutorial	form on a CRO
	33 rd	Tutorial	
12 th	34th	Transistor as a switch (explanation using CE	To use the op-Amp (IC
		transistor characteristics) Collector coupled	741) as inverting one and
		astable, monostable, bistable multivibrator	non-inverting amplifiers,
		circuits (explanation using wave shapes).	adder, comparator,
	35 th	Applications of wave-shaping circuits Brief	integrator and
		mention of uses of multivibrators	differentiator and verify
	36 th	Working and applications of transistor	the result using p-spice
		inverter circuit using power transistors	software
th	th		
13"	37"	Working Principles of different types of	To study the pin
	th	power supplies	configuration and
	38 th	CVTs, IC voltage regulator (78 XX,79XX)	working of IC 555 and its
	39"	CVTs, IC voltage regulator (78 XX,79XX)	use as monostable and
4.411	40 th	The basic energetic relevantifier. The	astable multivibrator
14th	40	differential emplifier. The emitter equaled	Revision and viva-voce
		differential amplifier. The emitter coupled	
		and surrants	
	11 st	Desig operational amplifier applications	
	41	Basic operational amplifier applications,	
		integrator and differentiator, summer,	
	12 nd	Subtractor	
	42	configuration of IC 741	
454	42rd	Diagram and exercise of 555 10	Povision and viva visa
1510	43	block ulagram and operation of 555 IC	Revision and Viva-Voce
	a a th	umer	
	44	Revision	

45 th Sessional test		
---------------------------------	--	--